CALCULUS
FOR EVERYONE

CALCULUS FOR EVERYONE

UNDERSTANDING

THEMATHEMATICS OFCHANGE

MITCH STOKES

 WITH ILLUSTRATIONS BY SUMMER STOKES

 WITH ILLUSTRATIONS BY SUMMER STOKES}

CORRECTION SHEET

A NEW TOOL: THE LIMIT

THE ERRORS FOR CHAPTER 8 HAVE BEEN CORRECTED IN VERSION 1.1.0

8.4 SAME LIMIT, DIFFERENT BEHAVIOR

Incorrect

Correct

8.8 EXERCISES

Correct

f. $\lim _{x \rightarrow 3}\left(\frac{x-4}{x^{2}-x-12}\right)$
9. $\lim _{x \rightarrow 4}\left(\frac{x-4}{x^{2}-x-12}\right)$
h. $\lim _{x \rightarrow 1}\left(\frac{(x-1)^{2}}{x-1}\right)$
i. $\lim _{k \rightarrow 0}\left(\frac{(x+k)^{2}-x^{2}}{k}\right)$
j. $\lim _{x \rightarrow 0}(\sqrt{x})$
K. $\lim _{x \rightarrow 5}(\sqrt{x})$

1. $\lim _{x \rightarrow 0}\left(\frac{x^{3}}{x}\right)$
m. $\lim _{x \rightarrow 1}\left(\sqrt{x^{2}-1}\right)$

THE METHOD OF APPROXIMATION AND DEFINING INSTANTANEOUS SPEED

THE ERRORS FOR CHAPTER 9 HAVE BEEN CORRECTED IN VERSION 1.1.0

9.2 FREE FALL AND AVERAGE SPEED

We can calculate d_{f} and d_{i} as follows:

$$
\begin{aligned}
& d_{i}\left(t_{i}\right)=16 t_{i}^{2} \\
& d_{f}\left(t_{f}\right)=16 t_{f}^{2}
\end{aligned}
$$

So given that $t_{f}=3 \mathrm{~s}$ and $t_{i}=0 \mathrm{~s}$. as we said, we can write things this way:

$$
\begin{aligned}
& d_{1}(1)=16(1)^{2}=16 \mathrm{ft} \\
& d_{3}(3)=16(3)^{2}=144 \mathrm{ft}
\end{aligned}
$$

Correct

We can calculate d_{f} and d_{i} as follows:

$$
\begin{aligned}
& d_{i}\left(t_{i}\right)=16 t_{i}^{2} \\
& d_{f}\left(t_{f}\right)=16 t_{f}^{2}
\end{aligned}
$$

So given that $t_{f}=3 \mathrm{~s}$ and $t_{i}=1 \mathrm{~s}$, as we said, we can write things this way:

$$
\begin{aligned}
& d_{1}(1)=16(1)^{2}=16 \mathrm{ft} \\
& d_{3}(3)=16(3)^{2}=144 \mathrm{ft}
\end{aligned}
$$

9.6 STUDY QUESTIONS

Incorrect

Question 11:
For a dropped object the average velocity betwee 0 and 3 seconds smaller than the average velocity between the interval covering 2 to 3 seconds. Why is the latter average speed greater even though the interval is smaller?

Correct

Question 11:
For a dropped object the average velocity betwee 1 and 3 seconds smaller than the average velocity between the interval covering 2 to 3 seconds. Why is the latter average speed greater even though the interval is smaller?

USING THE METHOD OF INCREMENTS TO CALCULATE INSTANTANEOUS SPEED

THE ERROR FOR SECTION 10.5 WILL BE CORRECTED IN THE NEXT PRINTING OF CALCULUS—VERSION 1.1.1
STUDY QUESTION ERRORS HAVE BEEN CORRECTED IN VERSION 1.1.0
10.5 APPROACHING THE INSTANT FROM THE OPPOSITE DIRECTION

10.7 STUDY QUESTIONS

Incorrect

Question 7:
In our first example, where did we get $t_{i}=3-\Delta t$? How did we get $d_{i}=16(3-\Delta t)^{2}$? How did we find $d_{f}-144 \mathrm{ft} / \mathrm{s}$? Where did we get $t_{f}=3$ seconds?

Correct

Question 7:
In our first example, where did we get $t_{i}=3-\Delta t$? How did we get $d_{i}=16(3-\Delta t)^{2}$? How did we find $d_{j}=144 \mathrm{ft}$? Where did we get $t_{f}=3$ seconds?

Incorrect

Question 12:
In our second example, where we approached the instant of interest from the opposite direction, what was t_{i} and how is this different from the t_{i} in the previous example? What were d_{f} and t_{f} ? How did we find $d_{i}=144 \mathrm{ft} / \mathrm{s}$? Where did we get $t_{i}=3$ seconds?

Correct

Question 12:
In our second example, where we approached the instant of interest from the opposite direction, what was t_{i} and how is this different from the t_{i} in the previous example? What were d_{f} and t_{f} ? How did we find $d_{i}=144 \mathrm{ft}$? Where did we get $t_{i}=3$ seconds?

USING THE METHOD OF INCREMENTS TO FIND AN

 INSTANTANEOUS SPEED FUNCTIONTHE ERRORS FOR CHAPTER 11 HAVE BEEN CORRECTED IN VERSION 1.1.0

11.1 FINDING $v(t)$

Incorrect

figure 11.1b

Incorrect

Correct

$$
\begin{aligned}
v & =\lim _{\Delta t \rightarrow 0} \text { (Uave) } \\
& =\lim _{\Delta t \rightarrow 0}(32-16 \Delta t) \\
& =32 t-16(0) \\
& =32 t
\end{aligned}
$$

$$
\begin{aligned}
v & =\lim _{\Delta t \rightarrow 0}(\text { (Vave }) \\
& =\lim _{\Delta t \rightarrow 0}(32 t-16 \Delta t) \\
& =32 t-16(0) \\
& =32 t
\end{aligned}
$$

THE DERIVATIVE

THE ERRORS FOR CHAPTER 12 HAVE BEEN CORRECTED IN VERSION 1.1.0

12.3 RATE OF CHANGE AT AN INSTANT

Incorrect
the average rate of
$v_{\text {ave }}(t)=\frac{\Delta d}{\Delta t} \longleftarrow \begin{aligned} & \text { change i. } y \text { grith } \\ & \text { respect to } \\ & \text { time }\end{aligned}$

Correct
the average rate of
$v_{\text {ave }}(t)=\frac{\Delta d}{\Delta t} \quad \begin{aligned} & \text { change in distance } \\ & \text { with respect to }\end{aligned}$
time

Incorrect

rate of change in x with respect to time
Correct

$$
\begin{aligned}
& \text { Vave }(t)=\frac{\Delta x}{\Delta t} \\
& v(t)=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t}\right)<\begin{array}{l}
\text { the instantaneous } \\
\text { rate of change in } x \\
\text { with respect to time }
\end{array}
\end{aligned}
$$

12.6 DERIVATIVES VERSUS PLAIN OL' LIMITS

FINDING MORE DERIVATIVES

THE ERRORS FOR CHAPTER 13 HAVE BEEN CORRECTED IN VERSION 1.1.0

13.1 THE DERIVATIVE FOR ANY FUNCTION OF THE FORM $y(x)=a x^{2}$

Incorrect

Correct

$$
\begin{gathered}
\text { yevaluated at } \quad y \text { evaluated at } x-\Delta x \\
\Delta y=a(x)^{2}-a(x-\Delta x)^{2}<
\end{gathered}
$$

13.9 EXERCISES

a. $y(x)=5 x^{2}$
a. $y(x)=5 x^{2}$
b. $f(x)=x^{2}$
b. $f(x)=x^{2}$
c. $h(t)=-16 t^{2}$
c. $h(t)=-16 t^{2}$
d. $g(x)=\frac{15}{\pi} z^{2}$
d. $g(z)=\frac{15}{\pi} z^{2}$

DERIVATIVES AND THE PROBLEM OF CHANGE

THE ERRORS FOR CHAPTER 15 HAVE BEEN CORRECTED IN VERSION 1.1.0

15.1 ACCELERATION: HOW FAST SPEED CHANGES

Incorrect

$$
\begin{aligned}
& d(t)=16 t^{2}=K t^{n} \\
& d^{\prime}(t)=v(t)=n K t^{n-1}=2 \quad 16 x^{2-1}=2 \cdot 16 t=32 t
\end{aligned}
$$

Correct

$$
\begin{aligned}
& d(t)=16 t^{2}=k t^{n} \\
& d^{\prime}(t)=v(t)=n K t^{n-1}=216 t^{2-1}=2 \cdot 16 t=32 t
\end{aligned}
$$

15.3 DROPPING AN OBJECT

Incorrect

$$
h(t)=-16 t^{2}
$$

Correct
$d(t)=-16 t^{2}$

SLOPES AND THE METHOD OF INCREMENTS

THE ERRORS FOR CHAPTER 17 HAVE BEEN CORRECTED IN VERSION ו.ו. 0

17.7 EXERCISES

Incorrect

Exercise 4:
Consider the graph below. Let's call the point we're interested in c and the interval or increment h. Write out the definition of the derivative $f^{\prime}(x)$ in terms of the limit. Approach c from values greater than c. This isn't really new to you, but the form is often how the definition of the derivative is formulated in calculus texts, in terms of c and h.

Correct

Exercise 4:
Consider the graph below. Let's call thex-value ye're interested in c and the interval or increment h. Write out the definition of the derivative $f^{\prime}(x)$ in terms of the limit. Approach c from values greater than c. This isn't really new to you, but this form is often how the definition of the derivative is presented in calculus texts, in terms of c and h.

SLOPES AND THE PROBLEM OF CHANGE

THE ERRORS FOR CHAPTER 18 HAVE BEEN CORRECTED IN VERSION 1.1.0

18.2 SLOPES AND FREE FALL: $d(t)$

Incorrect

figure 18.2a

Correct

MORE INFORMATION FROM DERIVATIVES

THE ERRORS FOR CHAPTER 19 HAVE BEEN CORRECTED IN VERSION 1.1.0

19.1 EXTRACTING INFORMATION FROM DERIVATIVES

figure 19.1a

Correct

figure 19.1a

Incorrect

figure 19.1b
Correct

figure 19.1b
Incorrect
$x=\frac{1}{2} \xrightarrow{\mathbb{N}} y(x)=\left(-\frac{1}{2}\right)^{1} \xrightarrow{\text { OUT }} y=\frac{1}{4}$
$x=\frac{1}{2} \xrightarrow{\text { value of } y} \begin{aligned} & \text { (not slope of } y)\end{aligned} y^{\prime}(x)=2\left(-\frac{1}{2}\right) \xrightarrow{\text { OUT }} y^{\prime}=1 \begin{aligned} & \text { value of } y^{\prime} / \\ & \text { slope of } y\end{aligned}$
Correct

$$
\begin{aligned}
& x=\frac{1}{2} \xrightarrow{\mathbb{N}} y(x)=\left(\frac{1}{2}\right)^{2} \xrightarrow{\text { OuT }} y=\frac{1}{4} \\
& x=\frac{1}{2} \xrightarrow{\text { value of } y} \begin{array}{l}
\text { (not slope of } y)
\end{array} \\
& y^{\prime}(x)=2\left(\frac{1}{2}\right)
\end{aligned} \begin{array}{ll}
\text { OUT } & y^{\prime}=1 \\
\text { value of } y^{\prime} / \\
\text { slope of } y
\end{array}
$$

Incorrect

figure 19.1c

Correct

figure 19.1c

Incorrect

figure 19.1d

Correct

figure 19.1d

Incorrect

$$
\left.\begin{array}{l}
x=\frac{1}{2} \xrightarrow{\mathbb{N}} y(x)=\left(-\frac{1}{2}\right)^{2} \\
\xrightarrow{\text { OUT }} y=\frac{1}{4}
\end{array} \begin{array}{l}
\text { value of } y \\
\text { (not siope of } y)
\end{array}\right]
$$

Correct

$$
\begin{aligned}
& x=-\frac{1}{2} \xrightarrow{\mathbb{N}} y^{\text {OUT }} y(x)=\left(-\frac{1}{2}\right)^{2} \xrightarrow{\text { OuT }} y=\frac{1}{4} \quad \begin{array}{l}
\text { value of } y \\
\text { (not slope of } y)
\end{array} \\
& x=-\frac{1}{2} \xrightarrow{\mathbb{N}} y^{\prime}(x)=2\left(-\frac{1}{2}\right) \xrightarrow{\text { OuT }} y^{\prime}=-1 \quad \begin{array}{l}
\text { value of } y^{\prime} / \\
\text { slope of } y
\end{array}
\end{aligned}
$$

19.5 STUDY QUESTIONS

Incorrect

Question 9:
Write out the two rules for hone negative ralues relate to the steepness of slopes.

Correct

Question 9:
Write out the two rules for how positive and negative values relate to the steepness of slopes.

Incorrect

Question 11:
Draw the graph of $y^{\prime \prime \prime}(x)=0$ by itself. The entire function $y^{\prime \prime \prime}(x)=0$ is flat. What does this say about the function $y^{\prime}(x)=2 x$?

Correct

Question 11:
Draw the graph of $y^{\prime \prime \prime}(x)=0$ by itself. The entire function $y^{\prime \prime \prime}(x)=0$ is flat. What does this say about the function $y^{\prime \prime}(x)=2$?

20

LOOKING CLOSER AT GRAPHS OF FREE FALL

THE ERRORS FOR CHAPTER 20 HAVE BEEN CORRECTED IN VERSION 1.1.0
STUDY QUESTION 10 WILL BE CORRECTED IN THE NEXT PRINTING OF CALCULUS—VERSION 1.1.1

20.5 INTERPRETING THE VELOCITY FUNCTION'S GRAPH

Incorrect

Correct

figure 20.5

figure 20.5
20.10 STUDY QUESTIONS

Incorrect

Question 10:
Describe the physical situation of the following free fall formula:

$$
h(t)=16 t^{2}+80
$$

Correct

Question 10:
Describe the physical situation of the following free fall formula:

$$
h(t)=-16 t^{2}+80
$$

Incorrect

Question 18:
For the function

$$
h(t)=16 t^{2}+30 t+5
$$

Correct

Question 18:

For the function

$$
h(t)=-16 t^{2}+30 t+5
$$

21

THE ANTIDERIVATIVE: UNDOING DERIVATIVES

THE ERRORS FOR CHAPTER 21 HAVE BEEN CORRECTED IN VERSION 1.1.0

21.7 THE PROBLEM OF CHANGE AND FINDING C

Incorrect

$$
a(t)=-32=32 t^{\circ}
$$

Correct

$$
a(t)=-32=-32 t^{\circ}
$$

Incorrect

Correct

21.12 EXERCISES

Incorrect

Exercise 3:
d. An object in free fall whose behavior is described by the following graph:

Correct

Exercise 3:

d. An object in free fall whose behavior is described by the following graph:

using the method of summation to calculate integrals

THE ERRORS FOR CHAPTER 21 HAVE BEEN CORRECTED IN VERSION 1.1.0

23.3 INSCRIBED AREAS

Incorrect

figure 23.3 c

Correct

figure 23.3 c

Incorrect

$$
S_{n}=\underbrace{\frac{y_{1}}{4 \cdot \cdot \Delta x}}_{A_{1}}+\underbrace{\overbrace{4(1+\Delta x)}^{y_{2}}}_{A_{3}} \cdot \Delta x+\underbrace{\overbrace{4(1+2 \Delta x)}^{y_{3}} \cdot \Delta x}_{A_{3}}+\cdots+\underbrace{\overbrace{[1+(n-1) \Delta x]}^{y_{n}} \cdot \Delta x}_{A_{n}}
$$

Correct

$$
S_{n}=\underbrace{y_{1} \cdot \Delta x}_{A_{1}}+\underbrace{\overbrace{4(1+\Delta x)}^{y_{2}} \cdot \Delta x}_{A_{2}}+\underbrace{\overbrace{4(1+2 \Delta x)}^{y_{3}} \cdot \Delta x}_{A_{3}}+\cdots+\underbrace{\overbrace{4[1+(n-1) \Delta x]}^{y_{n}} \cdot \Delta x}_{A_{n}}
$$

Incorrect

$$
\left.S_{n}=4 \Delta x\right)+4 \Delta x(1+\Delta x)+4 \Delta x(1+2 \Delta x)+\cdots+4 \Delta x[1-(n-1)]
$$

Correct

$$
S_{n}=4 \Delta x+4 \Delta x(1+\Delta x)+4 \Delta x(1+2 \Delta x)+\cdots+4 \Delta x[1-(n-1) \Delta x]
$$

Incorrect
Correct
$S_{n}=4 n \Delta x+4(\Delta x)^{2}[1+2+\cdots+(n-1)]$
$S_{n}=4 n \Delta x+4(\Delta x)^{2}[1+2+\cdots+(n-1)]$

Incorrect
$S_{n}=4 n \Delta x+4(\Delta x)^{2} \cdot\left[\frac{n(n-1)}{2}\right]$

Correct
$S_{n}=4 n \Delta x+4(\Delta x)^{2} \cdot\left[\frac{n(n-1)}{2}\right]$

23.4 CIRCUMSCRIBED AREAS

Incorrect

$$
\begin{aligned}
& \overline{S_{n}}=\left(y_{1} \cdot \Delta x\right)+\left(y_{2} \cdot \Delta x\right)_{y_{2}}+\left(y_{3} \cdot \Delta x\right)+\cdots+\left(y_{n} \cdot \Delta x\right) \\
& \overline{S_{n}}=\overbrace{4(1+\Delta x)} \cdot \Delta x+\overbrace{4(1+2 \Delta x)} \cdot \Delta x+\overbrace{4(1+\Delta 3)} \cdot \Delta x+\overbrace{4(1+n \Delta x)} \cdot \Delta x \\
& \bar{S}_{n}=4 \Delta x\left(1^{A_{1}}+\Delta x\right)+4 \Delta x(1+2 \Delta x)+4 \Delta x(1+3 \Delta x)+\cdots+4 \Delta x\left(1^{A_{n}}{ }^{A_{3}} n \Delta x\right) \\
& \overline{S_{n}}=4 \Delta x+4(\Delta x)^{2}+4 \Delta x+8(\Delta x)^{2}+4 \Delta x+12(\Delta x)^{2}+\cdots+4 \Delta x+4 n(\Delta x)^{2}
\end{aligned}
$$

Correct

$$
\begin{aligned}
& \overline{S_{n}}=\left(y_{1} \cdot \Delta x\right)+\left(y_{2} \cdot \Delta x\right)_{y_{2}}+\left(y_{3} \cdot \Delta x\right)+\cdots+\left(y_{n} \cdot \Delta x\right) \\
& \overline{S_{n}}=4 \overbrace{4(1+\Delta x)} \cdot \Delta x+4(1+2 \Delta x) \cdot \Delta x+4(1+3 \Delta x) \cdot \Delta x \cdot+\underbrace{4(1+n \Delta x)} \cdot \Delta x \\
& \bar{S}_{n}=4 \Delta x\left(1^{A_{1}}+\Delta x\right)+4 \Delta x(1+2 \Delta x)+4 \Delta x(1+3 \Delta x)+\cdots+4 \Delta x\left(1^{A n}+n \Delta x\right) \\
& \bar{s}_{n}=4 \Delta x+4(\Delta x)^{2}+4 \Delta x+8(\Delta x)^{2}+4 \Delta x+12(\Delta x)^{2}+\cdots+4 \Delta x+4 n(\Delta x)^{2}
\end{aligned}
$$

23.5 MORE (COMPLICATED) EXAMPLES: $y(x)=x^{2}$

Incorrect

Correct

Incorrect

$$
\begin{aligned}
& \overline{S_{n}}=\left(y_{1} \cdot \Delta x\right)+\left(y_{2} \cdot \Delta x\right)+\left(y_{3} \cdot \Delta x\right)+\cdots+\left(y_{n} \cdot \Delta x\right) \\
& \begin{array}{l}
S_{n}=\left(y_{1} \cdot \Delta x\right)+\left(y_{2} \cdot \Delta x\right)_{y_{2}}+\left(y_{3} \cdot \Delta x\right)+\cdots+\left(y_{n} \cdot \Delta x\right) \\
\bar{S}_{n}=\overbrace{\underbrace{1+\Delta x)^{2}}_{A_{1}} \cdot \Delta x}^{y_{1}}+\overbrace{\underbrace{1+2 \Delta x)^{2}}_{A_{2}} \cdot \Delta x}^{y_{3}}+\underbrace{\underbrace{y_{3}}_{1+3 \Delta x)^{2}} \Delta x}_{A_{3}}+\cdots+\underbrace{\overbrace{1+n \Delta x)^{2}}^{y_{n}} \cdot \Delta x}_{A_{n}}
\end{array} \\
& \overline{S_{n}}=(1+\Delta x)(1+\Delta x) \Delta x+(1+2 \Delta x)(1+2 \Delta x) \Delta x+(1+3 \Delta x)(1+3 \Delta x) \Delta x+\cdots+(1+n \Delta x)(1+n \Delta x) \Delta x \\
& \overline{S_{n}}=\left(1+2 \Delta x+(\Delta x)^{2}\right) \Delta x+\left(1+4 \Delta x+4(\Delta x)^{2}\right) \Delta x+\left(1+6 \Delta x+9(\Delta x)^{2}\right) \Delta x+\cdots+\left(1+2 n \Delta x+n^{2}(\Delta x)^{2} \Delta x\right) \\
& \overline{S_{n}}=\Delta x+2(\Delta x)^{2}+(\Delta x)^{3}+\Delta x+4(\Delta x)^{2}+4(\Delta x)^{3}+\Delta x+6(\Delta x)^{2}+9(\Delta x)^{3}+\cdots+\Delta x+2 n(\Delta x)^{2}+n^{2}(\Delta x)^{3}
\end{aligned}
$$

Correct

$$
\begin{aligned}
& \overline{S_{n}}=\left(y_{1} \cdot \Delta x\right)+\left(y_{2} \cdot \Delta x\right)_{y_{2}}+\left(y_{3} \cdot \Delta x\right)+\cdots+\left(y_{n} \cdot \Delta x\right) \\
& \overline{S_{n}}=\underbrace{(1+\Delta x)^{2}}_{A_{1}} \cdot \Delta x+\overbrace{(1+2 \Delta x)^{2} \cdot \Delta x}^{(1+2}+\underbrace{(1+3 \Delta x)^{2}}_{A_{2}} \Delta x+\cdots+\underbrace{\overbrace{1}}_{A_{3}} \overbrace{A_{n}}^{y_{n}} \underbrace{}_{n \Delta x)^{2} \cdot \Delta x} \\
& \overline{S_{n}}=(1+\Delta x)(1+\Delta x) \Delta x+(1+2 \Delta x)(1+2 \Delta x) \Delta x+(1+3 \Delta x)(1+3 \Delta x) \Delta x+\cdots+(1+n \Delta x)(1+n \Delta x) \Delta x \\
& \left.\overline{S_{n}}=\left(1+2 \Delta x+(\Delta x)^{2}\right) \Delta x+\left(1+4 \Delta x+4(\Delta x)^{2}\right) \Delta x+\left(1+6 \Delta x+9(\Delta x)^{2}\right) \Delta x+\cdots+\left(1+2 n \Delta x+n(\Delta x)^{2}\right) \Delta x\right) \\
& \overline{S_{n}}=\Delta x+2(\Delta x)^{2}+(\Delta x)^{3}+\Delta x+4(\Delta x)^{2}+4(\Delta x)^{3}+\Delta x+6(\Delta x)^{2}+9(\Delta x)^{3}+\cdots+\Delta x+2 n(\Delta x)^{2}+n^{2}(\Delta x)^{3}
\end{aligned}
$$

