CALCULUS FOR EVERYONE

CALCULUS FOR EVERYONE

UNDERSTANDING THE MATHEMATICS

OF CHANGE

MITCH STOKES

WITH ILLUSTRATIONS BY SUMMER STOKES

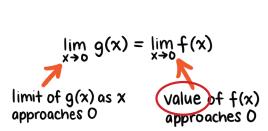
CORRECTION SHEET

8 A NEW TOOL: THE LIMIT

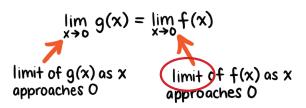
THE ERRORS FOR CHAPTER 8 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

8.4 SAME LIMIT, DIFFERENT BEHAVIOR

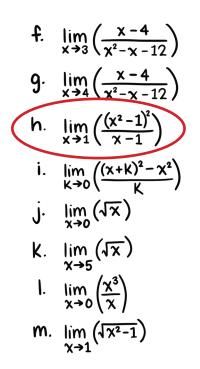
Incorrect

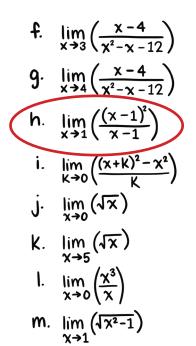


Correct



8.8 EXERCISES





9 THE METHOD OF APPROXIMATION AND DEFINING INSTANTANEOUS SPEED

THE ERRORS FOR CHAPTER 9 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

9.2 FREE FALL AND AVERAGE SPEED

Incorrect

We can calculate d_f and d_i as follows:

 $d_i(t_i) = 16t_i^2$ $d_f(t_f) = 16t_f^2$

So given that $t_f = 3$ s and $t_i = 0$ s, as we said, we can write things this way:

$$d_1(1) = 16(1)^2 = 16 \text{ ft}$$

 $d_3(3) = 16(3)^2 = 144 \text{ ft}$

Correct

We can calculate d_i and d_i as follows:

$$d_i(t_i) = 16t_i^2$$

 $d_f(t_f) = 16t_f^2$

So given that $t_f = 3$ s and $t_f = 1$ s, as we said, we can write things this way:

 $d_1(1) = 16(1)^2 = 16 \text{ ft}$ $d_3(3) = 16(3)^2 = 144 \text{ ft}$

9.6 STUDY QUESTIONS

Incorrect

Question 11:

For a dropped object the average velocity between 0 and 3 seconds is smaller than the average velocity between the interval covering 2 to 3 seconds. Why is the latter average speed greater even though the interval is smaller?

Correct

Question 11:

For a dropped object the average velocity between 1 and 3 seconds is smaller than the average velocity between the interval covering 2 to 3 seconds. Why is the latter average speed greater even though the interval is smaller?

10 USING THE METHOD OF INCREMENTS TO CALCULATE INSTANTANEOUS SPEED

THE ERROR FOR **SECTION 10.5** WILL BE CORRECTED IN THE NEXT PRINTING OF CALCULUS—**VERSION 1.1.1 STUDY QUESTION** ERRORS HAVE BEEN CORRECTED IN **VERSION 1.1.0**

10.5 APPROACHING THE INSTANT FROM THE OPPOSITE DIRECTION

10.7 STUDY QUESTIONS

Incorrect

Question 7:

In our first example, where did we get $t_i = 3-\Delta t$? How did we get $d_i = 16(3-\Delta t)^2$? How did we find $d_f = 144$ ft/s? Where did we get $t_f = 3$ seconds?

Correct

Question 7:

In our first example, where did we get $t_i = 3-\Delta t$? How did we get $d_i = 16(3-\Delta t)^2$? How did we find $d_f = 144$ ft? Where did we get $t_f = 3$ seconds?

Incorrect

Question 12:

In our second example, where we approached the instant of interest from the opposite direction, what was t_i and how is this different from the t_i in the previous example? What were d_f and t_f ? How did we find d_i =144 ft/s? Where did we get t_i = 3 seconds?

Correct

Question 12:

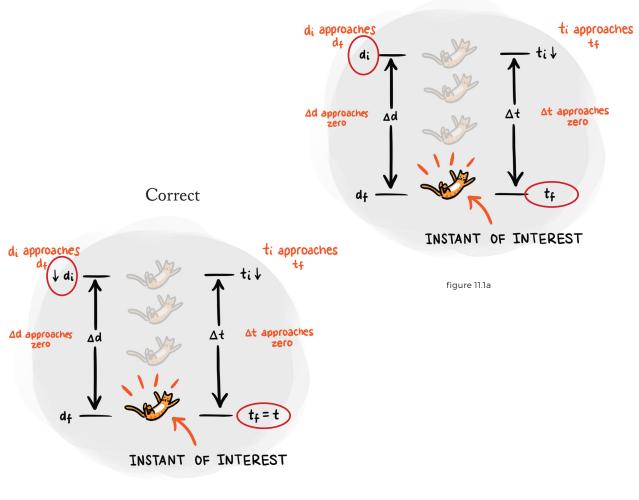
In our second example, where we approached the instant of interest from the opposite direction, what was t_i and how is this different from the t_i in the previous example? What were d_f and t_f ? How did we find $d_i = 144$ ft? Where did we get $t_i = 3$ seconds?

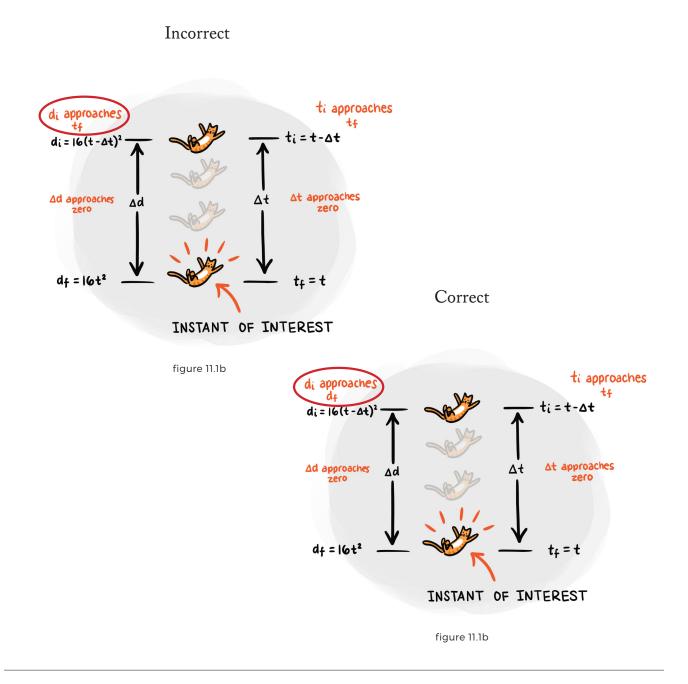
11 USING THE METHOD OF INCREMENTS TO FIND AN INSTANTANEOUS SPEED FUNCTION

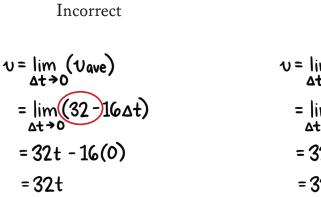
THE ERRORS FOR CHAPTER 11 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

11.1 FINDING v(t)

Incorrect



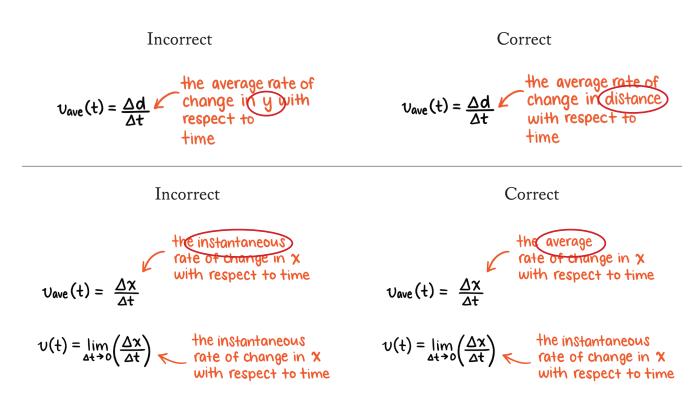




12 The derivative

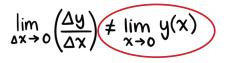
THE ERRORS FOR CHAPTER 12 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

12.3 RATE OF CHANGE AT AN INSTANT



12.6 DERIVATIVES VERSUS PLAIN OL' LIMITS

 $\lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \right) \neq \lim_{x \to 0} y$

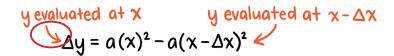


13 FINDING MORE DERIVATIVES

THE ERRORS FOR CHAPTER 13 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

13.1 THE DERIVATIVE FOR ANY FUNCTION OF THE FORM $y(x) = ax^2$

Incorrect



Correct

y evaluated at $x - \Delta x$ $\Delta y = a(x)^2 - a(x - \Delta x)^2 \checkmark$

13.9 EXERCISES

Incorrect

Correct

a. $y(x) = 5x^{2}$ b. $f(x) = x^{2}$ c. $h(t) = -16t^{2}$ d. $g(x) = \frac{15}{\pi}z^{2}$ a. $y(x) = 5x^{2}$ b. $f(x) = x^{2}$ c. $h(t) = -16t^{2}$ d. $g(z) = \frac{15}{\pi}z^{2}$

15 Derivatives and the problem of change

THE ERRORS FOR CHAPTER 15 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

15.1 ACCELERATION: HOW FAST SPEED CHANGES

Incorrect

 $d(t) = 16t^{2} = Kt^{n}$ $d'(t) = v(t) = nKt^{n-1} = 2 (16x^{2-1}) = 2 \cdot 16t = 32t$

Correct

 $d(t) = 16t^{2} = Kt^{n}$ $d'(t) = v(t) = nKt^{n-1} = 2(16t^{2-1}) = 2 \cdot 16t = 32t$

15.3 DROPPING AN OBJECT

Incorrect

$$h(t) = -16t^2$$

$$d(t) = -16t^2$$

17 SLOPES AND THE METHOD OF INCREMENTS

THE ERRORS FOR CHAPTER 17 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

17.7 EXERCISES

Incorrect

Exercise 4:

Consider the graph below. Let's call the point we're interested in c and the interval or increment h. Write out the definition of the derivative f'(x) in terms of the limit. Approach c from values greater than c. This isn't really new to you, but the form is often how the definition of the derivative is formulated in calculus texts, in terms of c and h.

Correct

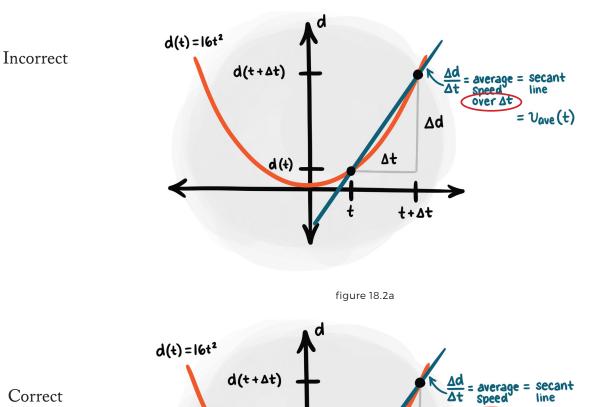
Exercise 4:

Consider the graph below. Let's call the x-value we're interested in c and the interval or increment h. Write out the definition of the derivative f'(x) in terms of the limit. Approach c from values greater than c. This isn't really new to you, but this form is often how the definition of the derivative is presented in calculus texts, in terms of c and h.

18 **SLOPES AND THE PROBLEM OF CHANGE**

THE ERRORS FOR CHAPTER 18 HAVE BEEN CORRECTED IN VERSION 1.1.0

18.2 SLOPES AND FREE FALL: d(t)



d (+) .

Correct

۵t

Δt

∆d

t+∆t

= Vave(t)

19 More information from derivatives

THE ERRORS FOR CHAPTER 19 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

19.1 EXTRACTING INFORMATION FROM DERIVATIVES

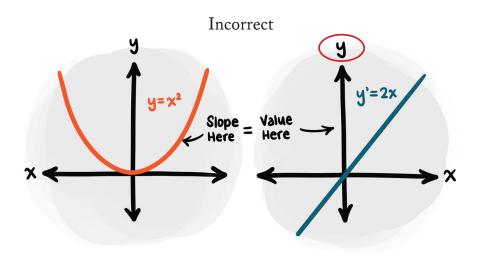
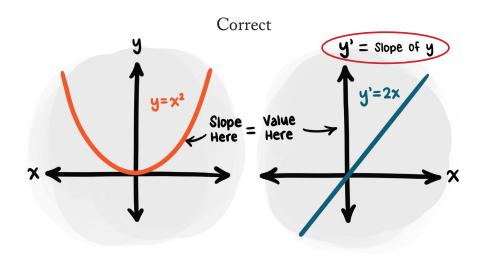
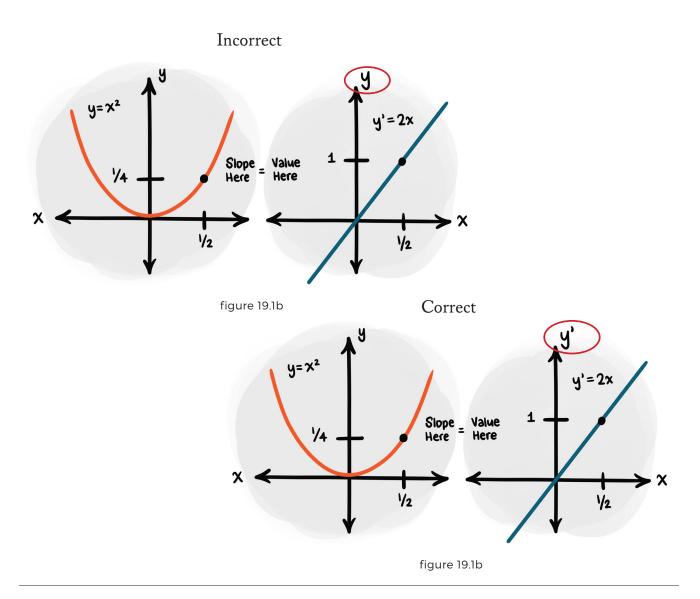


figure 19.1a





Incorrect

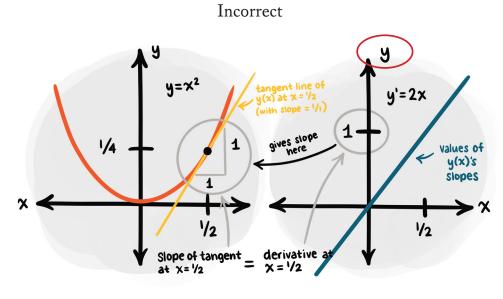
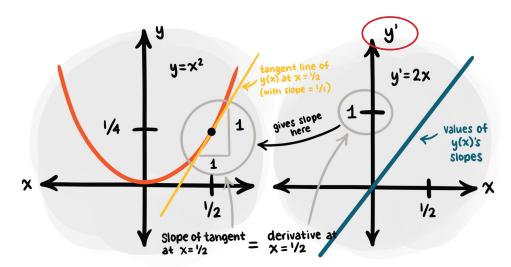
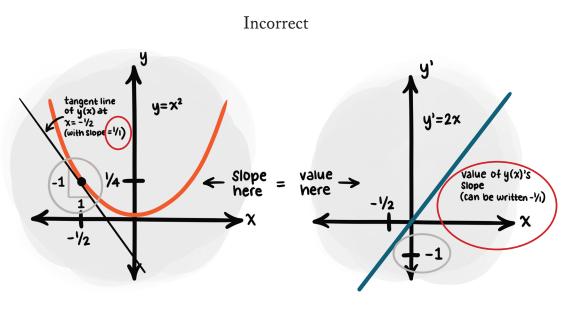


figure 19.1c



Correct

figure 19.1c



Correct

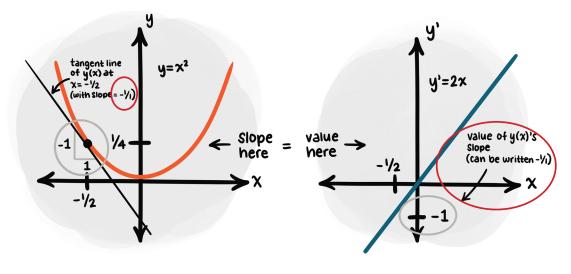
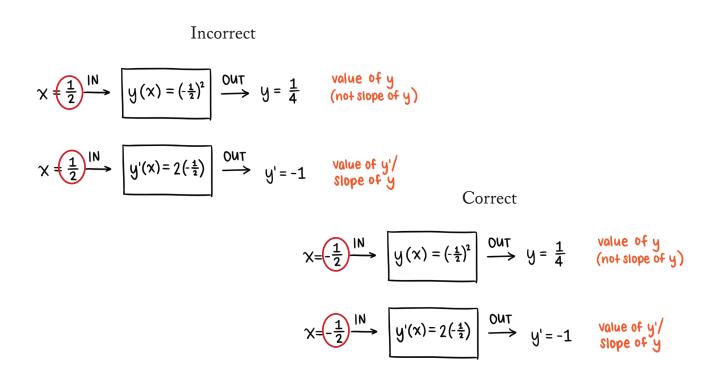


figure 19.1d



19.5 STUDY QUESTIONS

Incorrect

Question 9:

Write out the two rules for how negative ralues relate to the steepness of slopes.

Correct

Question 9:

Write out the two rules for how positive and negative values relate to the steepness of slopes.

Incorrect

Question 11:

Draw the graph of y'''(x) = 0 by itself. The entire function y'''(x) = 0 is flat. What does this say about the function y'(x) = 2x?

Correct

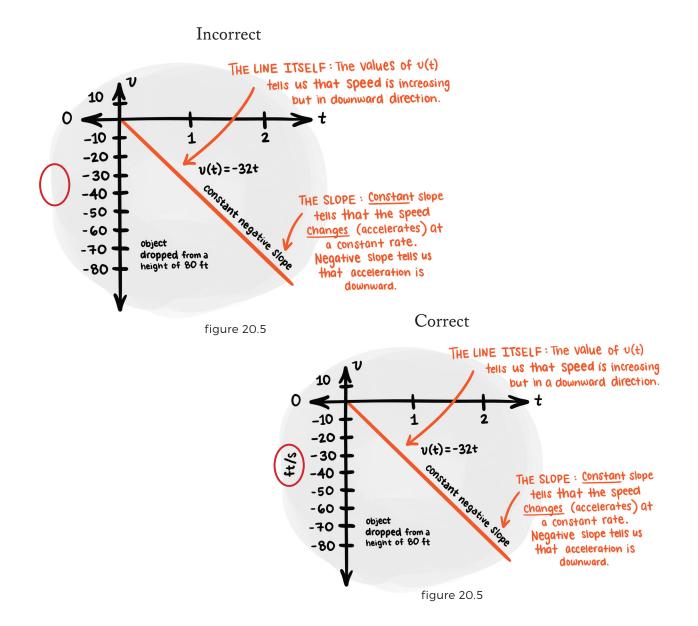
Question 11:

Draw the graph of y'''(x) = 0 by itself. The entire function y'''(x) = 0 is flat. What does this say about the function y''(x) = 2?

20 LOOKING CLOSER AT GRAPHS OF FREE FALL

THE ERRORS FOR CHAPTER 20 HAVE BEEN CORRECTED IN **VERSION 1.1.0 STUDY QUESTION 10** WILL BE CORRECTED IN THE NEXT PRINTING OF CALCULUS—**VERSION 1.1.1**

20.5 INTERPRETING THE VELOCITY FUNCTION'S GRAPH



20.10 STUDY QUESTIONS

Incorrect

Question 10:

Describe the physical situation of the following free fall formula:

Correct

 $h(t) = 16t^2 + 80$

Question 10:

Describe the physical situation of the following free fall formula:

 $h(t) = -16t^2 + 80$

Question 18:

For the function

Correct

Question 18:

For the function

21 The antiderivative: undoing derivatives

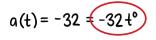
THE ERRORS FOR CHAPTER 21 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

21.7 THE PROBLEM OF CHANGE AND FINDING C

Incorrect

 $a(t) = -32 = 32t^{\circ}$

Correct



Incorrect

$$h(t) = -16t^2 + 30t + 5$$

 $u(t) = -32t + 30$
 $a(t) = -32$

$$h(t) = -16t^2 + 30t + 5$$

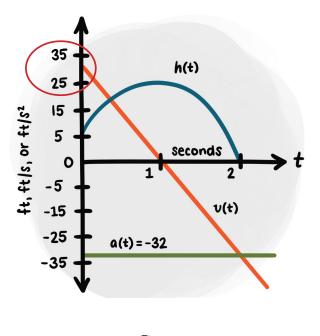
 $v(t) = -32t + 30$
 $a(t) = -32$

21.12 EXERCISES

Incorrect

Exercise 3:

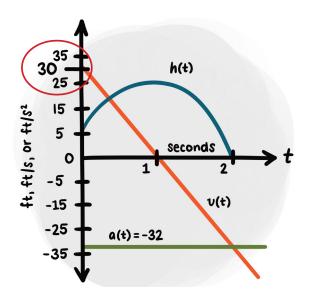
d. An object in free fall whose behavior is described by the following graph:



Correct

Exercise 3:

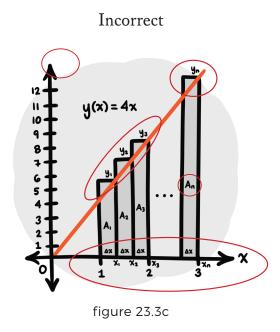
d. An object in free fall whose behavior is described by the following graph:

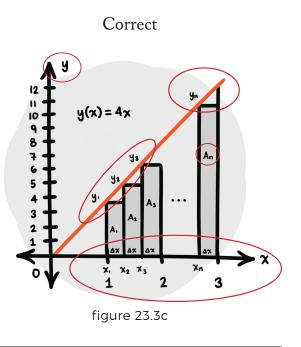


23 USING THE METHOD OF SUMMATION TO CALCULATE INTEGRALS

THE ERRORS FOR CHAPTER 21 HAVE BEEN CORRECTED IN **VERSION 1.1.0**

23.3 INSCRIBED AREAS





Incorrect

$$\underline{S_n} = \underbrace{\underbrace{4}_{A_1}}_{A_1} + \underbrace{4(1 + \Delta x) \cdot \Delta x}_{A_3} + \underbrace{4(1 + 2\Delta x) \cdot \Delta x}_{A_3} + \dots + \underbrace{4[1 + (n-1)\Delta x] \cdot \Delta x}_{A_n}$$

$$\underline{S_n} = \underbrace{\underbrace{4}_{A_1}}_{A_1} + \underbrace{4(1 + \Delta x) \cdot \Delta x}_{A_2} + \underbrace{4(1 + 2\Delta x) \cdot \Delta x}_{A_3} + \dots + \underbrace{4[1 + (n-1)\Delta x] \cdot \Delta x}_{A_n}$$



23.4 CIRCUMSCRIBED AREAS

Incorrect

$$\overline{S_{n}} = (y_{1} \cdot \Delta x) + (y_{2} \cdot \Delta x) + (y_{3} \cdot \Delta x) + \dots + (y_{n} \cdot \Delta x)$$

$$\overline{S_{n}} = 4(1 + \Delta x) \cdot \Delta x + 4(1 + 2\Delta x) \cdot \Delta x + 4(1 + \Delta 3) \cdot \Delta x + 4(1 + n\Delta x) \cdot \Delta x$$

$$\overline{S_{n}} = 4\Delta x (1 + \Delta x) + 4\Delta x (1 + 2\Delta x) + 4\Delta x (1 + 3\Delta x) + \dots + 4\Delta x (1 + n\Delta x)$$

$$\overline{S_{n}} = 4\Delta x + 4(\Delta x)^{2} + 4\Delta x + 8(\Delta x)^{2} + 4\Delta x + 12(\Delta x)^{2} + \dots + 4\Delta x + 4n(\Delta x)^{2}$$

$$\overline{S_n} = (y_1 \cdot \Delta x) + (y_2 \cdot \Delta x) + (y_3 \cdot \Delta x) + \dots + (y_n \cdot \Delta x)$$

$$\overline{S_n} = 4(1 + \Delta x) \cdot \Delta x + 4(1 + 2\Delta x) \cdot \Delta x + 4(1 + 3\Delta x) \cdot \Delta x + 4(1 + n\Delta x) \cdot \Delta x$$

$$\overline{S_n} = 4\Delta x (1 + \Delta x) + 4\Delta x (1 + 2\Delta x) + 4\Delta x (1 + 3\Delta x) + \dots + 4\Delta x (1 + n\Delta x)$$

$$\overline{S_n} = 4\Delta x + 4(\Delta x)^2 + 4\Delta x + 8(\Delta x)^2 + 4\Delta x + 12(\Delta x)^2 + \dots + 4\Delta x + 4n(\Delta x)^2$$

23.5 MORE (COMPLICATED) EXAMPLES: $y(x) = x^2$

Incorrect

$$\overline{S_{n}} = (y_{1} \cdot \Delta x) + (y_{2} \cdot \Delta x) + (y_{3} \cdot \Delta x) + \dots + (y_{n} \cdot \Delta x)$$

$$\overline{S_{n}} = (1 + \Delta x)^{2} \cdot \Delta x + (1 + 2\Delta x)^{2} \cdot \Delta x + (1 + 3\Delta x)^{2} \cdot \Delta x + \dots + (1 + n\Delta x)^{2} \cdot \Delta x$$

$$\overline{S_{n}} = (1 + \Delta x)(1 + \Delta x)\Delta x + (1 + 2\Delta x)(1 + 2\Delta x)\Delta x + (1 + 3\Delta x)(1 + 3\Delta x)\Delta x + \dots + (1 + n\Delta x)(1 + n\Delta x)\Delta x$$

$$\overline{S_{n}} = (1 + 2\Delta x + (\Delta x)^{2})\Delta x + (1 + 4\Delta x + 4(\Delta x)^{2})\Delta x + (1 + 6\Delta x + 9(\Delta x)^{2})\Delta x + \dots + (1 + 2n\Delta x + n^{2}(\Delta x)^{2}\Delta x)$$

$$\overline{S_{n}} = \Delta x + 2(\Delta x)^{2} + (\Delta x)^{3} + \Delta x + 4(\Delta x)^{2} + 4(\Delta x)^{3} + \Delta x + 6(\Delta x)^{2} + 9(\Delta x)^{3} + \dots + \Delta x + 2n(\Delta x)^{2} + n^{2}(\Delta x)^{3}$$

$$Correct$$

$$\underline{S_{n}} = (y_{1} \cdot \Delta x) + (y_{2} + \Delta x) + (y_{3} \cdot \Delta x) + \dots + (y_{n} \cdot \Delta x)$$

$$\underline{S_{n}} = \underbrace{1 \cdot \Delta x}_{A_{1}} + \underbrace{(1 + \Delta x)^{2} \Delta x}_{A_{2}} + \underbrace{(1 + 2\Delta x)^{2} \Delta x}_{A_{3}} + \dots + \underbrace{[1 + (n - 1)\Delta x]^{2} \Delta x}_{A_{n}}$$

$$\underline{S_{n}} = \Delta x + (1 + \Delta x)(1 + \Delta x)\Delta x + (1 + 2\Delta x)(1 + 2\Delta x)\Delta x + \dots + [1 + (n - 1)\Delta x][1 + (n - 1)\Delta x]\Delta x$$

$$\underline{S_{n}} = \Delta x + (1 + 2\Delta x + (\Delta x)^{2})\Delta x + (1 + 4\Delta x + 4(\Delta x)^{2})\Delta x + \dots + [1 + 2(n - 1)\Delta x + (n - 1)^{2}(\Delta x)^{2}]\Delta x$$

$$\underline{S_{n}} = \Delta x + \Delta x + 2(\Delta x)^{2} + (\Delta x)^{3} + \Delta x + 4(\Delta x)^{2} + 4(\Delta x)^{3} + \dots + [\Delta x + 2(n - 1)(\Delta x)^{2} + (n - 1)^{2}(\Delta x)^{3}]$$

Incorrect

$$\overline{S_{n}} = (y_{1} \cdot \Delta x) + (y_{2} \cdot \Delta x) + (y_{3} \cdot \Delta x) + \dots + (y_{n} \cdot \Delta x)$$

$$\overline{S_{n}} = \underbrace{(1 + \Delta x)^{2} \cdot \Delta x}_{A_{1}} + \underbrace{(1 + 2\Delta x)^{2} \cdot \Delta x}_{A_{2}} + \underbrace{(1 + 3\Delta x)^{2} \cdot \Delta x}_{A_{3}} + \dots + \underbrace{(1 + n\Delta x)^{2} \cdot \Delta x}_{A_{n}}$$

$$\overline{S_{n}} = (1 + \Delta x)(1 + \Delta x)\Delta x + (1 + 2\Delta x)(1 + 2\Delta x)\Delta x + (1 + 3\Delta x)(1 + 3\Delta x)\Delta x + \dots + (1 + n\Delta x)(1 + n\Delta x)\Delta x$$

$$\overline{S_{n}} = (1 + 2\Delta x + (\Delta x)^{2})\Delta x + (1 + 4\Delta x + 4(\Delta x)^{2})\Delta x + (1 + 6\Delta x + 9(\Delta x)^{2})\Delta x + \dots + (1 + 2n\Delta x + n^{2}(\Delta x)^{2}\Delta x)$$

$$\overline{S_{n}} = \Delta x + 2(\Delta x)^{2} + (\Delta x)^{3} + \Delta x + 4(\Delta x)^{2} + 4(\Delta x)^{3} + \Delta x + 6(\Delta x)^{2} + 9(\Delta x)^{3} + \dots + \Delta x + 2n(\Delta x)^{2} + n^{2}(\Delta x)^{3}$$

$$\overline{S_{n}} = (y_{1} \cdot \Delta x) + (y_{2} \cdot \Delta x) + (y_{3} \cdot \Delta x) + \dots + (y_{n} \cdot \Delta x)$$

$$\overline{S_{n}} = \underbrace{(1 + \Delta x)^{2} \cdot \Delta x}_{A_{1}} + \underbrace{(1 + 2\Delta x)^{2} \cdot \Delta x}_{A_{2}} + \underbrace{(1 + 3\Delta x)^{2} \cdot \Delta x}_{A_{3}} + \dots + \underbrace{(1 + n\Delta x)^{2} \cdot \Delta x}_{A_{n}}$$

$$\overline{S_{n}} = (1 + \Delta x)(1 + \Delta x)\Delta x + (1 + 2\Delta x)(1 + 2\Delta x)\Delta x + (1 + 3\Delta x)(1 + 3\Delta x)\Delta x + \dots + (1 + n\Delta x)(1 + n\Delta x)\Delta x$$

$$\overline{S_{n}} = (1 + 2\Delta x + (\Delta x)^{2})\Delta x + (1 + 4\Delta x + 4(\Delta x)^{2})\Delta x + (1 + 6\Delta x + 9(\Delta x)^{2})\Delta x + \dots + (1 + 2n\Delta x + n((\Delta x)^{2})\Delta x)$$

$$\overline{S_{n}} = \Delta x + 2(\Delta x)^{2} + (\Delta x)^{3} + \Delta x + 4(\Delta x)^{2} + 4(\Delta x)^{3} + \Delta x + 6(\Delta x)^{2} + 9(\Delta x)^{3} + \dots + \Delta x + 2n(\Delta x)^{2} + n^{2}(\Delta x)^{3}$$